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TECHNICALNOTED-196

ANALYSIS OF TEMPERATURE DISTRIBUTION ANDRADIANT

HEAT TRANSFER ALONG A RECTANGULA_ FIN

OF CONSTANT THICKNESS

By Seymour Lieblein

SUMMARY

A theoretical analysis has been conducted of the one-dimensional

steady-state radiant heat-transfer characteristics of rectangular fin

plates of constant thickness with uniform heat source along the leading

edge. The analysis was made for plates of both finite and infinite length

with constant thermal properties and no convection. Results are presented

in terms of the variation of the ratio of surface temperature to source

temperature and of radiating effectiveness with generalized distance from

the heat source for a wide range of ratios of environment sink-to-source

temperatures.

Results show that environment sink temperature has a pronounced ef-

fect on the temperature profiles but only little effect on the variation

of radiating effectiveness. Negligible influence on the total heat radi-

ated is also observed up to ratios of sink-to-source temperature of about

0.4. For a given sink temperature ratio_ the decrease in plate tempera-

ture and radiating effectiveness with distance from the heat source de-

pends primarily upon the magnitude of the source temperature and, to a

lesser extent 3 on the plate thickness# emissivity 3 and thermal

conductivity.

The solutions are made applicable for a variety of environmental

conditions through the determination of an equivalent sink temperature

for the environment. Examples of special environments that can be treated

in this manner and relations for determining the equivalent sink temper-

ature for the environment are given. Design parameters for minimizing

plate volume are derived s and applications of the results to practical

radiator considerations such as weight optimizations and thermal stresses

are indicated.
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INTRODUCTION

In the absence of a heat-absorbing atmosphere in outer space, many
space vehicles are faced with the problem of the dissipation of waste
heat. Although someexcess heat maybe removedthrough absorption in the
fuel in special cases, the prevailing meansof heat dissipation will un-
doubtedly be by radiation. Preliminary analyses of space-vehicle power-
plants (e.g., ref. i) indicate that sizable surface areas are required to
radiate the waste heat. Radiating surfaces maythus comprise a consider-
able part of the total weight. A knowledge of the characteristics of
heat-radiating surfaces in space is therefore necessary for the evaluation
and design of space-vehicle systems.

It is currently envisioned that heat-radiating surfaces in spacecraft
will either be part of the vehicle skin, as in the case of earth-launched
vehicles 3 or be separate component structures, as may be found in an

orbital-launched system. For these systems 3 the radiating surfaces may
either be continuous surfaces (in which the waste heat to be radiated is

introduced either continuously or periodically along the surface) or may

be composed directly of the tubes or channels carrying the heat-transfer

fluid, or some combination of the two. In many instances, therefore,

radiators will contain surfaces that will be required to both radiate and

conduct heat along the surface. Several examples of such radiator con-

figurations are shown schematically in figure 1. Furthermore, these ra-

diators will be exposed to other heat-emitting surfaces such as the sun 3

a planet, or other structures. Thus, fundamentally s such radiators cor-
respond to the problem of the combined effects of conduction and radiation

on the net heat transfer from a surface to an arbitrary environment in

space.

For analysis purposes, the continuous radiating surface with periodic

distribution of heat sources can be approximated by the flat plate of

constant thickness with a heat source along the leading edge of the plate.

If it is further specified that the heat source be constant along the

leading edge_ the problem is reduced to a one-dimensional one. Such a

situation in reality would correspond to a radiator to which the waste

heat is transferred by means of condensation of working-fluid vapor (vapor
heat cycle).

In the analysis presented herein, generalized steady-state heat-

_ransfer characteristics are determined for fin plates of both infinite

and finite length and constant thermal properties. Calculations of the

variation of surface temperature and heat-transfer effectiveness with

distance from the heat source are made by numerical means for a wide range

of ratios of sink-to-source temperatures. The solutions are made applica-

ble for a variety of special environmental conditions through the use of

an equivalent sink temperature. Design parameters for minimizing fin plate

volume are determined, and application of results to practical radiator
considerations is indicated.



A similar analysis of the heat-transfer characteristics of a fin plate
uniformly heated along an edge previously reported in reference 2 was not

received until the present calculations were nearly completed. The present

report is believed to be a more complete and detailed treatment of the

problem and carries the solutions to a wider range of fin end and effective

environmental temperatures. In addition 3 data on the variations of tem-

perature and heat radiated along the fin are included herein.
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SYMBOLS

surface area

projected surface area normal to incoming radiation

factor in equation for net heat transfer from fin plate (eq. (A24))

constant of integration

emissivity factor in equation for net heat transfer from fin plate

(eq. (A24))

radiant energy contained in wavelength increment dk

view or configuration factor for radiation between two surfaces

view factor for radiation between the illuminated portion of a

surface and another surface

function

thermal conductivity"

u

.1  (lo9)[
plate generalized length parameter, ._ kt \l-_] J units of

length

plate length

exponents

total number of discrete surfaces in fin environment

integrated heat radiated per unit time

heat conducted per unit time

integrated heat radiated per unit time with entire fin at source

temperature



S heat flux from concentrated heat source (e.g., 429 (Btu/hr)(sq ft)
for solar radiation in neighborhood of earth)

S' spacing between radiator tubes

T plate temperaturej deg abs

Ts sink temperature of environment, deg abs

TO source temperature I deg abs

T_ equivalent sink temperature of environment_ deg abs

T effective average temperature for finj deg abs

t plate thickness

V plate volume

W plate width

.../oE(lo9)f %
x plate_eneralizeddis_nce par_eter,._ kt .\ygg_/, _ts of

length

x distance along plate

absorptivity

A change in quantity

hemispherical emissivity

radiating effectiveness

e angle between incoming radiation and normal to receiving surface 3

deg

k wavelength of radiant energy

p reflectivity

a Stefan-Boltzmann constant (e.g., O.173Xl0 -8 (Btu/hr) (sq ft) (°R4))

Subscripts :

b enclosed body

d discrete surface
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earth

fin strip surface

fin total surface

integers referring to discrete surfaces

terminal value at end of plate (x = _)

with length Z held fixed

minimum

concentrated heat source

sink environment

with thickness held fixed

with width held fixed

distance position along plate

monochromatic value

heat source at leading edge of plate (x = 0)

"upper" surface of fin plate

"lower" surface of fin plate

infinitely long plate

ANALYSIS

Assumptions

The analysis considers the general case of a flat fin plate of con-

stant thickness t and length _ uniformly heated along its leading edge

at x = 0, as shown in figure 2. Heat is conducted along the plate from
the source and is radiated from both surfaces to the surrounding environ-

ment. The expected variation of plate temperature from its value at the

source TO to its terminal value T_ and the variation in net integrated

radiant heat transfer along the plate are indicated in the lower part of

the figure.
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The specific assumptions used in the development of relations for
the heat-transfer characteristics of the fin plate are as follows:

(i) The heat transfer is invariant with time (steady state).

(2) Heat is transferred out of the plate only by radiation (no con-
vection or external conduction) through a nonabsorbing medium.

(5) Thermal properties are constant.

(4) There is no conduction in the y-direction.

(5) The plate temperature is effectively constant across the thickness
t at all x positions (valid for t << W and t << Z).

(6) The heat loss from the two exposed side edges is sufficiently
small so that they can be considered to be thermally insulated (valid
for t << W).

(7) The heat loss from the end edge3 whenexposed3 is sufficiently
small so that the end edge also can be considered to be thermally insulated
(valid for t << _).

The problem is thus reduced to a mathematical formulation for one°
dimensional steady-state heat transfer under combined radiation and
conduction.

!
on

_o

Governing Equation for Temperature Distribution

The fundamental differential equation for the temperature distribu-
tion in linear heat flow under combined radiation and conduction has been

established in the literature (e.g. 3 ref. 53 p. 155). For completeness 3

the derivation for the specific case of the rectangular fin plate will

be developed herein.

The differential equation for the temperature variation is obtained

from consideration of the heat balance for an elemental strip W dx as

shown in figure 2. The local heat conduction through the cross-sectional

area tW at position x is given by Fourier's law as

Qc3x = -k(tW) d(_)x (i)

At x + dxj the heat conduction is

x dx
(2)
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The net internal heat conduction across the shaded element is then obtained

as

% = k(tw)fd2T (3)
l

In the absence of any convection or external conduction_ the external

heat loss from the strip is given by the difference between the heat ra-

diated from both surfaces of the strip and the heat received by the strip

surfaces by radiation from the external environment. In practical situa-

tions, the external environment of the fin may be composed of a large en-

closing surface or several discrete surfaces in conjunction with one or
more concentrated heat sources. In general_ the determination of the net

heat transfer between the fin and an arbitrary environment is extremely

dlfficult_ since the solution of complex integral equations is required

(e.g., ref. 4_ pp. 26-A7). However, simple approximations for the net
heat transfer have been obtained in special cases through the use of

simplifying assumptions. Several practical situations for which simple

relations are possible are discussed in appendix A.

For the special cases considered therein, the net heat radiated from

the surfaces of the elemental strip can be expressed in the general form

where E is a factor involving the fin surface e_issivities and T s is

an equivalent sink temperature for the particular environment, as defined

in appendix A. The specific conditions required to make equation (4) an

acceptable representation of the net heat transfer are also given in ap-

pendix A. For example 3 for the elementary case of a fin plate with equal

thermal properties on bo_h surfaces orbiting around the earth (temperature

Te) with one surface always parallel to the earth,

E : Zc (5a)

and

coseTs*4 = 2_51 e + 2a
(Sb)

where S is the solar constant and e is the angle between the sun's

radiation and the normal to the plate. It is also shown in appendix A

that, for the environmental conditions consideredj the factor E and the

equivalent sink temperature T_ are both effectively independent of x.

For steady state, the net heat loss from the surface (eq. (4)) is

equal to the change in the internal heat conducted across the strip given

by equation (5). Thus,
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: - "
or

dx 2 kt
(6)

Equation (6) is readily integrated once through the use of the substitution

p = dT/dx to give (since the temperature slope is everywhere negative)

(+ ): - ),_-f{. - sm_-% + c (7)

The constant of integration C is evaluated from the boundary con-

dition at x = Z. If the plate is of infinite length 3 it is clear that

at x = Z = _ the temperature slope must approach zero_ so that

(dT/dx)_ = 0. For this condition_ from equation (7),

C_ = 5kt

If the plate is of finite length and one of a series of connected plates

with repeated temperature variations (continuous surface with intermittent

heat sources), then x = _ represents the point of minimum temperature

between the sources. Here again_ the boundary condition is identically

(dT/dx) Z = O, and equation (8) holds. If the plate is of finite length

and the end edge is exposed to an environment, a net radiant heat loss will

occur from the end surface area Wt. However, if t << _, as shown in

appendix B, this edge loss Can be neglected, and, again, equation (8)

will be satisfactory.

With the constant of integration given by equation (8), the temper-

ature gradient, from equation (7)_ is

= - ¥ 5kt (9)

If all temperatures are expressed as a ratio of the source temperature,
equation (9) becomes

d(m/%)
4.x

(i0)

!

(.n

<o
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Furthermore_ since the terms in the first radical are all independent of

x and nondimensional, the independent distance variable can be expressed

for simplicity as the generalized distance parameter

( (ll)

so that the basic differential equation for the temperature variation along

the plate becomes

d(T/T0)
dX • - <7o/j \To/ - -0 6525 - TO ) (12)

Thusj the equation is reduced to a form involving only the three independ-

ent variables X, T_/To, and T_/T O.

Solutions for the temperature-ratio variation along the plate were

made for the three basic situations of the infinite plate with zero sink

temperature 3 the infinite plate with a range of sink-to-source tempera-

tures, and the finite plate with a range of sink-to-source temperatures.

For the plate of infinite length_ the boundary condition requires that no

net heat be radiated at infinity_ and_ therefore 3 T I = T_ and

(dT/dx)_ = O. In this case, equation (12) reduces to

d(T/T O)

dX
= -0.6325 <7o] ,To)+  To,/ (15)

For the special case of the infinite plate with zero equivalent sink tem-

perature, equation (15) reduces further to a simple form that can be

integrated directly to give

T 1

+ 0.9487 x _ kt \i000] J

Solutions for the cases with nonzero sink temperatures (eqs. (12)

and (15)) were obtained by numerical solution by a point-slope method on

an IBM 655 electronic computer. The value of X at which the slope term

d(T/T0)/dX attained a value of zero was taken as the generalized length

of the plate

L= _ kt \i--0-_/
(15)
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for the given value of Tz/T 0 and T*/T 0. For the X-increment schedules

used, a comparison between the exact solution of equation (14) and a cor-

responding numerical solution indicated that numerical values of T/T 0

were within -0.00002 of the exact values. The values of L determined

for the finite plate were estimated to be correct to about 0.5 percent.

Heat-Transfer Relations

Heat radiated. - At any position X along the plate, the heat ra-

diated from the surfaces from X = 0 to X = X can be obtained in either

of two ways. First, equation (4) can be integrated directly in terms of
X to give

%oow ]o \T°/j
(is)

or, for comparison purposes in terms of a heat-radiated quotient,

_0 X (+o) -
_aEkt (i015 )\i000/

(l_)

!

The total heat radiated from a plate of length Z is then

= ciX - L

aEkt ( 1015) \1000/

(iS)

Second, since only internal heat conduction is involved in the plate

heat transfer, the heat radiated from the surfaces will be equal to the
heat conducted into the plate from the source at x = 0 minus the heat

conducted past the point x = x. This conducted heat is given by

Qc = -ktW d((:_l---X)o+ ktw{dT_kdxIx = Qx (19)
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or 3 in terms of T/T 0 and X,

.W,__0_i(_oV {I_£_o'.I_£_o_.I1QX = -ktWTo _ kt kl_) cIX JO - d.X ]X_

from which is obtained for the heat-radiated parameter

_x,,,, =-I[_'_'_°'l_.,o-tr-_'_"_°'l__x}
(_o/_

JcEkt (lO 15 ) \lO00/

The slopes of the temperature ratios at

from equation (12) for T/T 0 = 1.0 and

Qx/W

_Ekt( lO 15) ( TO _5
_ooo1

(2o)

X = 0 and X = X are obtained

T/T 0 = T/T0_ so that

: ij[ _

__[(_}__(#f]__c_,_ (2l)

The total heat radiated from the plate QL is obtained from equation (21)

for T/T 0 = Tz/T0, in which case the second radical becomes zero.

For the plate of infinite length 3 since T_ = T_

(%/w}.
.... = 0.6525 1 +_ \Tol - \_-J

m

(22)

According to equation (22), the maximum heat radiated Q_ in this case

will occur when the second radical is zero# that is I when T/T 0 = T_/Toj

which# as expected, is the condition at infinity. Equation (22) also
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showsthat 3 for the infinite plate, the effect of equivalent sink temper-
ature on the maximumheat radiated can be indicated by the ratio

 iTq_
= _ + \G/ \ToY(_)Ts=O

(23)

where

(_IT = 0 "6525 _Ekt (I015) Ii-O-_) 5
_=o

(24)

Heat ratio. - In many instances, it is convenient to consider the

local heat radiated in terms of its ratio to the terminal value for a

given plate configuration. This ratio 3 called the heat ratio Qx/QL3 is

given from equations (17) and (18) as

(_],.,o,_"_ - k%] x%

 :fo (}o)' (m"- \%/ L

(25)

or, from equation (21), as

i- T_
(26)

For the special case of the infinite plate and zero sink temperature, the

heat ratio is obtained from equations (22) and (24) with T_ = 0 and with

T/T 0 from equation (14). The result is

a_ _aE(109)
1 + 0.9487 x II kt \1000/ ..I

I
O1
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Radlatin_ effectiveness. - A measure of the radiating effectiveness
of the plate can be obtained by comparing the actual heat radiated from

the plate to the heat that would be radiated if the plate were at a con-

stant temperature equal to the source temperature. This isothermal heat

radiated up to any distance x, designated by the symbol Qx' is obtained

from integration of equation (4) for T = TO to give

7 = uoo0j - \_o)J

or, in terms of the generalized distance parameter X, from equation (17),

_/w , = x - \To/]
1015 mo 5

Thus 3 the radiating effectiveness 3 given by the ratio

by the symbol G, becomes_ in general,

(28)

Qx/Q X and designated

_x x 'ix- \too/
= _--= (29)

_ (T_]4%c i \_/

or, by dividing equation (21) by equation (28),

X

....
[ \To/ J

- \_o/J - t,_/\% (3o)

For the infinite plate with nonzero sink temperature, since

T_/T 0 = T_/To, the radiating effectiveness of equation (50) reduces to
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0.6325

\T0/J

+ \To/ \To/
+

(51)

and, for the special case of zero sink temperaturej to

(z 5/2 ]0.6525 i -
noo= x kTo/ j

or, from equation (14), to

V -
x_ _t ' \z--666J 1 +

IJ,:,E(lO9)
0.9487 x _1- kt

(52)

The same result, of course, can be obtained from direct integration of

equation (29) in conjunction with equation (14).

!

O]
DO
_O

HEAT-TRANSFER RESULTS

The results and discussion for the heat-transfer characteristics of

the fin plate will be presented in terms of the infinite-length plate and

the finite-length plate. The results for the infinite plate are useful

in establishing reference variations and in indicating the influence of

the principal variables involved.

Infinite-Length Plate

Zero sink temperature. - Exact solutions for the heat-transfer char-

acteristics of a fin plate of infinite length were obtained for the con-

dition of zero sink temperature from equations (14), (27), and (32).

Although single curves of the various heat-transfer characteristics can

be obtained with the use of the generalized distance parameter X, varia-

tions were computed for a range of values of source temperature to show

the trends involved. The resulting plots are given in figures 5(a), (b),

and (c), which show respectively the variations of temperature ratio, heat

ratio, and radiating effectiveness with distance from the heat source for

a wide range of source temperatures. In figure 5(b) it is seen that, as

a result of the general ability of a unit surface area to radiate more

heat at higher temperatures, the plate can radiate most of its heat in

successively shorter distances as source temperature is increased. As a
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consequence, the plate temperature will fall off more rapidly with dis-

tance at the higher source temperatures; as indicated in figure 5(a).

The steeper temperature profiles at the higher source temperatures also

result in a reduced radiating effectiveness, as shown in figure 5(c)1

since the integrated value of (T/T0)4 in equation (29) will decrease as

TO increases.

It is also noted that according to equations (14), (27) 3 and (52)

the physical distance x at which a given temperature ratio or heat ratio

is attained will also be a function of plate thickness, emissivity 3 and

thermal conductivity. However, in view of the powers involved in each

variable, variations in x due to changes in these quantities should

generally be less pronounced than the variations due to corresponding

changes in source temperature.

Nonzero sink temperature. - Examples of the change in temperature-

ratio profile that occurs for a fixed value of source temperature when

the equivalent sink temperature varies are shown for illustrative purposes

in figure 4. The effect of increasing sink temperature reduces the plate

distance at which most of the heat is radiated. For purposes of generali-

zation, the variation of plate heat-transfer characteristics with equiva-

lent sink temperature ratio T_/T 0 as obtained from the numerical solu-

tions is shown in figure 5 in terms of the generalized distance parameter

x  loE(lO9)/To _
= x_ kt _i--O-_/ " The temperature profiles are expressed as the

ratio (T - T_)/(T 0 - T_) in figure 5(a) in order to normalize the curves

between the limits of zero and unity, and the heat ratiQ and radiating

effectiveness as before are given in figures 5(b) and (c)_ respectively.

(The curves for T_/T 0 = 0 in fig. 5 represent all the curves in fig. 3.)

The effect of equivalent sink temperature ratio in reducing the ef-

fective radiating distance along the plate for the entire range of T_/T 0

is clearly indicated in figures 5(a) and (b). The radiating effectiveness,

however 3 as shown in figure 5(c)1 varies only little with sink temperature

ratio. Actually, for values of X less than about 0.5, the effectiveness

increases with increasing T_/To, while, for values of X greater than

about 1.25, a decrease is observed.

In order to obtain an understanding of the variation of radiating

effectiveness with sink temperature ratio, it is noted from equation (29)

that _ will depend on the ratio of decrease of the numerator compared

with the rate of decrease of the denominator as T_/T 0 is increased. The

numerator represents the difference between the average value of the

fourth power of T/T 0 over the X increment in question and the base
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value (T_/To)4. This difference will therefore depend on the curvature
of the temperature-ratio variation. If the temperature-ratio profiles
were similar for all sink temperatures 3 numerator and denominator would
increase proportionately 3 and the effectiveness would remain constant with
sink temperature. However_for the infinite fin plate_ as shownin figure
5(a) 3 the temperature profiles are not similar. Thusj the variation in
effectiveness with sink temperature ratio is a result of the nonsimilarity
of the profiles. For values of X less than about O.S in figure 5(a)j
less change in curvature of the temperature variation occurs as sink tem-
perature ratio is increased. The average value of (T/T0)A will therefore
tend to increase relative to the base value and produce an increase in
effectiveness. On the other hand3 for X greater than 1.25, the average
value will tend to decrease relative to the base value as T_/T0 is in-
creased, and thus a lower effectiveness will be obtained. In fact, the
decreasing effectiveness with T_/T0 for large values of X can readily
be established mathematically from equation (31). It has been shownthat
a maximum value of QX is attained theoretically at infinity. However,

values of QX approaching the maximum are attained quite rapidly in many

cases. Thus, the effectiveness tends to approach the variation given by

Q_/-Q_. The maximum value of effectiveness is then obtained from equation

(51) for T/T 0 = T_/T 0 to be

- J

The variation of effectiveness with sink temperature ratio at a fixed

large value of X is readily established from substitution of several
trial values.

As far as maximum heat radiated is concerned 3 figure 6 illustrates

the variation with sink temperature as obtained from equation (25). It

is seen that values of T_/T 0 up to 0._ can be attained with less than

a S-percent reduction in heat radiated. Also shown in the figure for

comparison is the variation expected from a hypothetical plate of con-

stant temperature throughout. The maximum heat ratio for the fin plate

over the full range of T_/T 0 is therefore not very much different than

that for the isothermal plate.

I
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Finite-Length Plate

Terminal values. - For the case of a fin plate of finite length_ the
temperature profiles will be altered somewhat compared to the infinite

plate in order that the boundary condition of zero temperature slope at

the end of the plate be met, as illustrated in figure 7. For large values

of X_ as indicated in figure 7_ only small changes in the profile are

necessary, since slope values for the infinite plate are small in this

region. However_ as X decreases and the slope for the infinite plate

becomes larger, a greater difference between the terminal value of T/T 0

and the infinite plate value is required to produce the zero slope. How-

everj since it is expected that the temperature ratios must approach unity

at X = 0 in both cases_ the difference in T/T 0 must then approach zero

at the leading edge.

Variations of terminal temperature ratio (T_ T_)/(T 0 - T_) with

To
generalized length parameter Z __\l-O-_J obtained from the numer-

ical solutions are shown in figure 8 for a wide range of equivalent sink
temperature ratios. The increase in temperature ratio at the end of a

plate of finite length compared with that value for the infinite plate at

the same distance can readily be obtained from a comparison of figures 8

and 5. As expected 3 maximum differences in temperature ratio are obtained

in the region from about L = 0.4 to 0.8.

In view of the increased temperature along the finite plate compared

to the infinite plate up to the same value of length, it is expected that

the total heat radiated from the finite plate (QL) will be greater than

that radiated from the infinite plate up to x = Z (QL,_)- Also, the

maximum difference in heat radiated should follow the maximum differ-

ences in temperature ratio. The comparison ratio QL/QL, _ obtained from

the calculations is shown in figure 9. Also presented in the figure are

lines of constant terminal temperature ratio as obtained from figure 8.

The ratio of heat radiated is found to decrease with increasing sink tem-

perature, since the difference between (T/To) _ and (T/T0)z, _ decreased

with increasing T_/T O. The effect of sink temperature is pronounced

only for values of T_/T 0 greater than about 0.2.

Since the ideal heat radiated (heat radiated at source temperature)

is the same for both the finite and infinite plates_ the increase in heat

radiated for the finite plate should result in a greater radiating ef-

fectiveness for the finite plate 3 especially at the low values of X where

QL/QL,_ is large. Calculated variations of radiating effectiveness with

plate-length parameter are plotted in figure i0 to show this trend (as seen

by comparison with fig. 5(c)). As for the infinite plate, the variation
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of radiating effectiveness with equivalent sink temperature is not large.
Apparently, the effect of the nonsimilarity of temperature profiles for
the finite plate is such as to give a decrease in effectiveness with in-
creasing sink temperature at all values of X. Thus_ the total heat
radiated from a fin plate of given length can readily be determined from
figure i0 and equation (28).

The effect of equivalent sink temperature on the magnitude of the
heat radiated for a plate of given length is illustrated in figure ii.
Here again, a less-than-5-percent reduction in sink temperature total
heat radiated is obtained for values of T_/T05-up to about 0.4.

Variations alon5 fin. - For the variations of temperature ratio and

heat radiated along plates of finite length, it was found more practical

to present the results in terms of derived analytical functions rather

than in the required large number of individual plots. As can be seen

in figure 7, the difference in temperature ratio between the finite-

length plate and the infinite plate at the same value of X steadily in-

creases as X increases to L. It was found that this difference can

be closely approximated by a power variation such that the local-

temperature-ratio variation for the finite length plate can be expressed

as

r,,( }I¢ f
TO - 0 - + [ \5o - T Aji[/

where _T - T_)I(T 0 - T_= is the temperature ratio for the infinite

plate at the particular value of X in question (fig. 5(a)) 3 and the

term within the brackets represents the difference between the terminal

value of temperature ratio.(at the end of the plate) and the value of

temperature ratio for the infinite plate at the same value of X (i.e.,

at X = L). Values of terminal temperature ratio are obtained from fig-

ure 8_ and values of the exponent n deduced.from the numerical solution

as a function of terminal temperature ratio and equivalent sink tempera-

ture are given in figure 12. The maximum error in temperature ratio in-

volved in the use of the power relation was about _g).O05.

The variation of heat radiated for a given value of T_/T 0 and

T*/T 0 can be obtained from the local values of T/T 0 determined pre-

viously in conjunction with equation (21). In an alternate procedure,
the heat variation can be calculated from the derived empirical relation

b]
I

6n

tO
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where QX_ is the heat radiated up to the value X for the infinite

plate (fig. 5(b) and eq. (22), or fig. 5(c) and eq. (28)), QdQL,_ is

the terminal heat ratio as given in figure 93 and deduced values of ex-

ponent m are given in figure 13. Maximum error involved in the use of

equation (35) for the heat ratio QX/QX was calculated to be about
3 _

±0.005.
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PLATE VOLUME RELATIONS

Another factor important in the analysis of the fin plate as a ra-

diator component is the relation between the plate volume and the plate

heat-transfer characteristics. In particular 3 it is desirable to deter-

mine the values of the plate thickness 3 width, and length that will result

in a minimum plate volume for a given amount of heat radiated. Such re-

lations for minimum plate volume are necessary for optimizations of

radiator configurations.

The volume of the plate is given by

v = t_w (3s)

and the heat radiated from the plate_ as obtained from equations (19)

and (i0), is

l<l _
37)

In equation (37)_ since there is a value of generalized length parameter

L corresponding to each value of T_/T 0 for a given T_/T0, the radical

term will be a function of L. Thus_ equation (37) can be expressed as

Q_= s32.s -v_ w o(log)\ygg@_eYZ7 (38)

where

f(L) : f(2/-7{) : 1 - t_o/ - s - (59)

The ratio of plate volume to heat radiated is obtained in terms of

the physical variables _ and t from equations (36) and (58) for f_xed

properties and source temperature as
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where C is a constant. It is seen immediately that a minimum of the

ratio V/Q_ occurs when t goes to zero. The value of _ required to

make the ratio go to zero, however, is not obvious, since the quotient

involving Z goes to infinity as _ goes to infinity and is indetermi-

nate when _ goes to zero. Furthermore, inasmuch as f(L) is always
finite_ equation (58) shows that for a fixed value of heat radiated W

must go to infinity as t goes to zero. A low-volume fin will therefore

generally be characterized by small thickness and large width.

In practical cases of radiator design_ however, it may be necessary

to place some restriction on the allowable value of either t, _, or W.

It may therefore be more useful for design purposes to determine the re-

lations among the remaining variables that will produce the least volume

for a given heat radiated when one variable is held fixed.

Fixed lensth. - If the plate length must be fixed and the thickness

and width are free to vary, the relation for ratio of plate volume to heat

radiated is obtained from equation (56) after substitution for W from

equation (58) and for t from equation (15) as

To
652.5 k (i--_) (AI)

where

: i
L¢7 7

The volume function f_.(L) decreases continuously with L as shown in

figure iA(a)j indicating that, for least volume at fixed length _3 the

design value of L should be as large as possible. This result is to

be expected 3 of course 3 since it was indicated previously that least volume

results from least thickness, and an increase in L for this case can

result only from a decrease in thickness (for constant k 3 E, and TO).

The specific variation of the volume function curves in figure i4(a)
is explained as follows: As L increases 3 the square root of the thick-

ness, according to equation (15), will decrease linearly with L. How-

ever 3 for low magnitudes of L (say between 0.i and about 1.0)3 the length
function f(L) as shown in figure 15 will increase with L but at a rate

less than linear. Thus, some increase in W will be required by equation

(38) to maintain Q_ constant. But; since t decreases with the square

t_
I
01
Do
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of L, a marked decrease in the product tW and therefore in the volume

is to be expected. When L attains values that result in an essentially

constant f(L), the required increase in W will become greater and the

decrease in volume should tend to be less. Specifically_ in the region

where f(L) is essentially constant, tW should vary as I/L. Thus, the

volume function variation in figure iA(a) should approach a slope of

unity as L gets very large.

The procedure for a design of fixed length is thus to determine t

from the value of _ and some practically selected large value of L

consistent with other design requirements (meteoroid puncture, thermal

stress, etc.). The plate width W is then determined from equation (38)
for the desired heat transfer from the computed values of f(L) and t.

It should be noted that fixed-length designs with large values of L will

necessarily have low radiating effectivenesses.

Fixed thickness. - If the plate thickness is fixed and the length

and width can vary, the appropriate expression for ratio of plate volume

to heat radiated can be obtained from equations (36) after substitution

for W from equation (38) and for _ from equation (15) as

(_) = t [ft(L)] (A3)

t {To
632.s  E(109)\i000/

where

ft(L ) = Lq m7

The volume function ft(L) plotted in figure iA(b) decreases with

decreasing L and appears to approach its minimum value as L approaches

zero. These results indicate that least fin volume at fixed thickness

requires least length, since only _ = 0 can give L = 0.

The reason for the specific variation of the curves in figure iA(b)

is obtained from consideration of the length function f(L) shown in

figure 15. As L decreases from high values of L, f(L) will remain es-

sentially constant. At fixed t, as indicated by equation (38), W will

also tend to remain constant for a given value of Q_. Thus, the volume

will vary only with 13 which decreases linearly with L. As L de-

creases to the region where a marked decrease in f(L) occurs, a corres-

ponding increase in W will be necessary to produce the required Q_,

and the fall-off in volume will be progressively diminished. Apparently 3

as L approaches zero, the required increase in W becomes sufficient
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to completely offset the effect of the decrease in _ and result in a
minimumof the f_uction.

Thus, whenfixed thickness is prescribed, a low value of _ should
be used, and the corresponding values of L and W for the desired heat
transfer and thermal properties are determined respectively from equations
(15) and (38). In practical radiator designs_ however, there will be
limitations to the minimumvalue of _ that can be used because of spacing
requirements for the tubes and becausea sufficient ratio of _ to t
must be maintained to validate the one-dimensionality of the solutions.

Fixed width. - From the preceding two cases, it was seen that, theo-

retically, the fin plate for low volume will be characterized by very

small Z and very small t, and, consequently 3 the width W will be very

large. In some instances; however, it may be necessary to restrict the

value of W so that the ratio Q/W is fixed. In this case, the ratio

of plate volume to heat radiated is obtained from equation (36) with

substitution for Z from equation (15) and for t from equation (38).

The result is

v (%/w)2fw(L)
_ (45)

QZ 9

(632"46)3 (io)

where

fw(L ) = L

Plots of the volume function fw(L) in figure 14(c) show that a definite

minimum of the function exists for all values of sink temperature. Values

of L for minimum plmte volume range from about 0.92 at T_/T 0 = 0 to

about 0.76 at T_/T 0 = 0.9.

The reason for the existence of a minimum in this case is clear when

the variations with L of t, 2, and f(L) are considered for the case

Of equation (45). As L decreases from large values of L, f(L) remains

essentially constant, so that, for fixed Qz/W in equation (38), t also

shows little variation. The plate volume (eq. (56)) will therefore tend

to decrease linearly with L since only the variation of Z is effective

in this region. As L decreases to the region where f(L) starts to de-

crease 3 an increase in t must occur in order to satisfy equation (56)_

and the reduction in volume tends to become progressively smaller. In

the limit as L and f(L) go to zero, t must go to infinity, and (since

nonzero values of _ are allowed) the volume also will go to infinity.

Thus, a minimum of the volume function must occur.

!

_O
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In a fixed-width design thereforej minimum volume will be obtained

if t is selected as obtained from equation (38) for the desired value

of Q_/W and for f(L) evaluated at the minimum value of L as found in

figure iA(c). The plate length _ is then determined from equation (15).

Radiating effectiveness for these minimum values of L will vary from

about 0.565 at T_/T 0 = 0 to 0.61 at T_/T 0 = 0.9 (see fig. i0).

For convenience 3 a plot of terminal temperature ratio

(T_ T_)/(T 0 - T_) against length function L upon which lines of con-

stant ratio of plate volume to minimum volume are drawn is illustrated in

figure 16. Thus_ for fixed-width designs 3 the closeness to minimum plate

volume can readily be determined for any selected value of plate-length

parameter or terminal temperature ratio.

APPLICATION OF RESULTS

The principal application of the preceding theoretical results for

the radiant heat-transfer characteristics of a rectangular fin plate will

be in the design of waste-heat radiators for satellite and space vehicles.

Since the heat source in the problem has been prescribed uniform along

the leading edge of the plate 3 the results will apply only to radiators

in which internal heat is supplied by means of a condensing vapor. Several

possible radiator configurations employing fin plates are illustrated in

figure i.

In the first illustration (fig. l(a)), a single or double isolated

fin plate is used to radiate heat supplied from the centerbody. In order

that the derived results be valid in this case 3 it is necessary that the

net heat transfer from the fin plate is not significantly affected by

any adjacent vehicle structure. The second figure (fig. l(b)) represents

a single-surface continuous fin radiator composed of a series of adjacent

fin plates with internally attached heat supply tubes at spacing S' = 2_.

The dashed lines in the figure indicate that the fin plates and supply
tubes may also be of integral rather than welded construction. The ex-

pected temperature variation along the fin is also shown in the figure.
Such a radiator construction might be part of a vehicle outer skin.

The total surface area required to radiate a given amount of heat in

this case can be given by, since E = _

A = nS'W = Q

where n is the number of supply tubes and _ is the radiating effective-

ness as defined previously. The heat supplied can also be related to the
tube flow area as follows:
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Q = mHc = pvHcn_r_ (_s)

where O, v_ and _ are respectively the vapor density 3 flow velocity_

and flow rate_ Hc is the heat of condensation of the fluid_ and rt is

the inner radius of the tube. Thus_ for given tube and fin plate thick-

nesses_ a radiator design of minimum total weight can be determined from

the use of equations (47) and (48) and the derived results for radiating

effectiveness and minimum plate volume. (In such calculationsj it n_y be

necessary to consider the inner surface of the fin and the exposed outer

surfaces of the tubes to be thermally insulated.)

A double-surface continuous fin radiator is shown in figure l(c).

Similar relations and procedures can be established for this configuration

to establish the spacing and overall width for minimum weight. Comparisons

can then be m_de with other double-surface configurations such as the

adjacent tube radiator of reference i and the fin and tube radiator de-
scribed in reference S. For the radiator of figure l(c), it should be

noted that_ in an actual case_ the heat radiated from the fin surfaces

might be somewhat greater than the values determined from the current

analysis since some heat will be radiated from the tube surfaces to the

central region of the inner surface of the fin plate.

In another application to radiator design_ the preceding results

can be utilized to determine the elementary thermal stresses that will

occur in the fin plates. According to reference 6_ the thermal stresses

in a rectangular fin plate of constant thickness can be calculated from

integration of the plate temperature variations as determined herein.

Thus 3 significant application of the results derived in this analysis

can be found in radiator design studies.

!
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FIN ENVIRONMENT

As indicated in the section entitled ANALYSIS, simple algebraic

relations for the net heat transfer between the fin plate and an arbitrary

environment can be obtained only for certain simplified situations. In

general, environments that can be treated in this way will consist of

several separated discrete surfaces each at uniform temperature and/or a

large enclosing surface also of uniform temperaturej and one or more con-

centrated heat sources. Examples of such environments are given in

figure 17.

In order to obtain simple solutions for the net heat transfer to

these environments, the following basic conditions must be met:

(i) The emissions and reflections from all surfaces are diffuse

(i.e., Lambert's cosine law is obeyed).

(2) The view factors from a differential area on the fin surface to

the discrete or enclosing surfaces are essentially constant over the fin

surface.

Condition (1) is the necessary assumption normally adopted in radia-

tion analyses for rough surfaces. Condition (2) is approached by surfaces

that are either far removed from the fin (figs. 17(a) and (b)) or, if

close to the fin, by surfaces that are extremely large compared to the

fin (fig. 17(c)). For example 3 such a composite environment might be

represented by a fin on a spaceship adjacent to another spaceship near a

planet. Specific developm@nts for each of the illustrative environments

in figure 17 will now be considered.

Complete Enclosure

Relations are available for the net heat transfer between an enclosed

body and an enclosure of uniform temperature Ts and area A s if the

variation over the enclosure of the view factor from a differential area

on the enclosure surface to the body is comparatively small. This as-

sumption, as well as condition (2), can be met exactly for such geometries

as concentric spheres, coaxial cylinders 3 or a thin equatorial disk in a

sphere. For these configurations, the net heat transfer between the en-

closed body and the enclosure is given by

q ..... (AI)

1 + Eb( -js Ab
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These conditions, howeverj for practical purposes 3 can be closely approxi-

mated for a body and enclosure for which the distance between the two

surfaces does not vary much over the surfaces. For a radiating fin plate 3

this condition will be approached if the fin is centrally located within

a very large enclosure (fig. 1V(a)). The equation for net heat transfer

between the fin strips and the sink surface then becomes, since A s >> Af,

In reality, such an environment might be represented by a fin plate at or

near the center of a large furnace or other large enclosing structure.

Although not a true enclosing surface_ outer space can be regarded

as a black body enclosure of effective temperature Ts obeying equation

(A2). For practical purposes, however, the sink temperature of space (of

the order of about 40 ° R) can normally be neglected in radiator studies.

I

O1
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Discrete Surfaces with Concentrated Heat Source

The case of a fin environment consisting of one or more discrete

surfaces and a concentrated heat source is illustrated in figure 17(b).

Heat-transfer relations for this environment can readily be formulated

if the additional condition is imposed that the view factors from the

discrete surface to the fin strip are sufficiently small that multiple

reflections from these surfaces will be negligible. (This condition will

be approached if the ratio of the distance between the fin and the dis-

crete surface to the fin length is large.) In many cases of radiator

deslgn_ it may be sufficient to neglect reflections entirely_ howeverj
for completeness, the analysis will include first reflections from all
heat sources.

The net heat loss from the fin to the environment is obtained as the

difference between the heat emitted by the fin and the heat absorbed by

the fin from the environment bodies. The heat emitted from the surfaces

fl and f2 of the fin strip W dx is given by

d% = ( fl+ (AS)

Heat will be received by the fin strips from direct emissions from the

discrete surfaces and the concentrated heat source and from reflections

from the discrete surfaces of heat emitted from the fin s the concentrated

heat source, and other discrete surfaces. However 3 according to the scope
of the analys_sj only first reflections need be considered. If the en-

vironment is enclosed by outer spacej there will also be a heat return from

space, butj as indicated prevlously 3 this heat is comparatively
insignificant.
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Discrete-surface emission. - The heat received by a fin strip from

direct emission from a discrete surface of area Ai3 uniform temperature
4

Ti3 and emissivity ci is

4
dQi_ f = ciGTiAiFi_fafi (A4)

The double subscript fi for the total absorptivity in equation (A4) is

used to indicate that the magnitude of a is based on the characteristics

of both the fin surface (symbol f) and the incoming radiation from the

discrete surface (symbol i). This distinction is necessary since_ by

definition_

_0 _ _Afeki dh

_fi _ _ (AS)

_0 ezi d_

where ehi is the incident energy contained in the spectral increment

dk. Thus 3 the magnitude of _ will depend on the characteristics and

temperature of the absorbing surface and on the temperature of the original

emitting body. Thenj since temperature and emissivity are constant over

the respective fin strip and discrete surfaces 3 equation (A4) can be ex-

pressed in terms of the fin strip area and the view factor from fin strip

to discrete surface according to the reciprocity theorem.

AiFi_ f = AfFf_ i (A6)

as

dQi_ f = _ieT4AfFf_iafi = ciG_iFf_iafiW dx (A7)

Discrete-surface reflection. - The heat originating from another sur-

face j that is reflected from the discrete surface i to the fin and

is absorbed by the fin is given by

dQj_f = (¢ja_jAjFj_i)PijF__f(mfj (AS)

where F__f is the view factor from the portion of surface i that is

illuminated by the radiation from surface j (for a flat surface 3

F! )3 and where1-f = Fi-f
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_0 _° P_iekf d_

Pij - _ (A9)

_0 eNj d_

Since no change in spectral distribution is assumed to occur after a

reflection, the fin absorptivity _fj is based on the radiation spectrum

of the original emitting surface j. Equation (A8)3 from the reciprocity

theorem for AjFj_ i and then for AiF__f, can then be expressed as

dQj_f = _jaTjFi_jPijF__icufjW dx (A10)

Heat-source radiation. The heat received by the fin strip from

direct and reflected heat-source (solar) radiation is

dQ8_ f = S(cos 8fS)aTsW dx + SA_PisF{_faTS (All)

' is the projected area of a discrete surface normal to the in-where A i

cident radiation from the heat source_ and F__f is the view factor from

the portion of the surface illuminated by the heat source to the fin

strip. As before, equation (All) can be expressed in terms of fin area

as

A i
dQs_ f : S(cos 8fS)_fsW dx + S PisF}_i_fS W dx

where, for the special case of a flat discrete surface_

AL
Ai - cos eiS

(AI2)

(AIS)

Fin reflections. - Inasmuch as the temperature varies over the surface

of the fin, the exact expression for the heat originating from the fin

surface thatAis reflected back to the fin strip surface will involve inte-
@ration of

_f over the length of the fin. However 3 for the purposes of

this analysis 3 it should be sufficient to consider an effective average

value for the fourth-power variation of the fin temperature, denoted by

_f, that an equivalent algebraic expression can be used. In thissuch

case, the heat received by the fin after reflection from a discrete sur-

face will be given by

!

_0
(D
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(Ai4)

From the reciprocity theorem for (ZW)_ff_i , equation (AI4) becomes

-4
d%_f : cf_TfAiFi_YFi_fPif_f

or, again, from reciprocity for AiFi_f,

d%_f : _f_Fi__Ff_i_if_fW (AIS)

In an actual calculation, it will be necessary to assume a trial value

for _f in equation (A15) based on TO and T_. A later check on the

assumed value can be made 3 but it is doubtful whether any recalculation

based on a more exact value for _ will generally be necessary.
I

Net radiation. The net heat lost by both fin surfaces is then ob-

tained as the difference between equation (A3) and the summation of equa-

tions (A7), (AIO), (A12)3 and (A15) for all discrete surfaces, or

e.T4.F .D _ • ' +

+ _ cos 8flS)CUflS + (cos 8f2S)_f2 S + PisF_l_i_fiS
i

i=l

' s]+ PisFfy_i_f2 +
i

i=l

+ f2 2 i-_2 f2-i if2 f2f _ c_W dx

_flTAFi-_iFfl-iPlfi_f_l

(A16)
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In a practical calculationj the need for including many of the brace

terms in equation (AI6) will depend largely on the expected magnitude of

the reflectivities and the view factors involved. The view factor from

the fin strip to a discrete surface is defined specifically as

cos _f cos _i dAi dAf

2
_r

(AI_)

where r is the distance vector from the fin strip to a point on the

discrete surface 3 _f is the angle between r and the normal to the fin

surface 3 and _i is the angle between r and the normal to the discrete

surface. A preliminary rough estimate of Ff_ i can be obtained_ however_

if average values of _f_ Si3 and r are considered to give

m

cos _f cos _i Ai
= (A18)

Ff_ i _2

Thus, the maximum value of view factor will be of the order of

i Ai

Ff-i - (AIg)

Example. - A special case of interest covered by these relations is

given by a fin plate orbiting around the earth such that one surface of

the fin is parallel to the _urface of the earth_ and the other surface is

exposed to the sun (fig. 17(c)). For this enviromuent, equation (A16)

reduces to_ with subscript e used for the earth_

dQ = (Cfl + ef2)eT_fW dx - eeTeFf2_eC_2e

[ ]_S (cos OflS)_2 s + --£. OesF_.2_eaf2S+ (l

+ cf2Tf2_e__2Ff2_ePef2_f2f2 _W dx (A20)

Since the earth's surface will be effectively flat and of infinite area

with respect to the finj both Ff2_e and F_2_e can be taken eq[_l to

unityj Fe__2 can be taken equal to zero, and (A'/A)e can be taken as

I

cu
Do
to



31

O_
OG
uO

cos efl S. Then, for equal thermal properties on both fin surfaces, equa-

tion (A20) becomes

dQ = {2¢f_f - _ea_e_fe + S(cos 0fS)_fs(l + PeS)]}W dx (A21)

If, as a further simplification, the earth can be regarded as a black

body so that Ee = 1 and PeS = 03 the equation is reduced to

The fractional error involved in neglecting the earth sink tempera-

ture and solar radiation for this configuration is then

Error _ _]k_f ] + (_) _{ ] (A25)

Calculated variations of this error with fin temperature are shown in

figure is for (_e/_f) --(_S/Cf) ---i, which _ght representa worst case
for radiators. It is seen that the effects of solar radiation and earth

sink temperature will be less than 5 percent for fin temperatures greater
than about I000 ° F.

General Form

For the environment cases considered hereinj it is noted that, if

the terms modifying _f- in equations (A2), (A16)_ and (A20) were des-

ignated by the symbol Ep and if the terms within the braces of each equa-

tion were designated by the symbol B 3 then the net radiant heat loss from

the plate can be represented in the form

or

Furthermore, if

(A24)

(A25)

B T_ (A2_)
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then the heat loss relation becomes simply

where T* is called the equivalent sink temperature for the particular
S

environment as defined by e_uation (A26). The quantity E is evaluated

from the term modifying _T_f in the heat-loss equation, and the quantity

B is obtained from an.evaluation of the brace term (i.e., all the terms

that do not modify _T_). For the three cases cited herein, E is equal

to the sum of the emissivities on the two fin surfaces, that is,

E = eI + e2 (A28)

However, this may not be so in all possible cases.

In a similar manner, a heat-loss relation in the form of equation

(A27) can be established for other possible environments that meet the

qualifications and assumptions listed. It should be noted, however, that

equation (A27) will not be valid for environmental surfaces whose distance

from the fin is less than about an order of magnitude greater than the

length of the fin.

In equations (A2) and (AI6), since the fin thermal properties are

assumed constant with temperature, all ef and aT values will be con-

stant with x. Furthermore, since the fin plate is flat_ _f will also

be effectively constant with x. Thenj with the view factors between the

environment surfaces and the fin prescribed effectively constant over the

fin (condition (2)), all quantities except Tf in these equations will

be independent of x. Thus, E and T_ can be treated as constants in

any integration of equation (A27).

!
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RADIATION LOSS FROM PLATE EDGE

If the plate end edge is exposed to an environment, a net radiant

heat loss will occur from the end surface area Wt (fig. 2) according to

the relation analogous to equation (5):

(Bl)

where the equivalent sink temperature with respect to the end edge T_3 _

need not necessarily be equal to T_ for the fin surfaces. This heat

must be supplied internally from the plate by conduction such that

Qc_Z = -ktW(_) = Q_ (B_)

It is thus obtained that, for this case_

k ss_
(Bs)

The constant of integration, from equations (7) and (BS) is then, after

factoring terms_

[! 5GEnt (T_ T.4'_2 ]- s,.Zj

The terms before the brackets_ however, are equal to the constant of

integration for zero edge heat loss as given by equation (8). Thus_

equation (B4) can be expressed as

2 3 [i - \T z /]
5_E_tTo(T_ ]3

The approximate error in the constant of integration defined as (C_ - C)/C

is then
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Error =

/T* \472

(B6)

Now, since E l = cZ and E = eI + e2, if •

2
E_ •2 2• E

E 2_ 4 4

is constant throughout,

(B7)

Substitution in equation (B6) then yields, after further manipulation:

i /T* \472

Error = - -_ [ _-_/_) lOj k_] \'_0/ [" .....

L

(Bs)

The term within the first bracket, however, according to equation (15),

is equal to the square of the generalized length parameter L. Thus, the

error becomes

Error = - - (Bg)

It is also noted that a maximum value of the ratio of the bracket terms

is obtained when T_ = T_jZ_ = O. Furthermore, since Tz/T 0 is a function

of L, the product L2(Tz/To)5- can be evaluated as a function of L as

shown in figure 19. It appears, from figure 19, that the function ap-

proaches a maximum value of about say 0.6. Thus, the maximum error is

simply

Max. error _ 0.375 (BIO)
(L/t) 2

A plot of maximum error as given by equation (BIO) is shown in figure 20.

It is seen that the maximum error in the constant of integration resulting

from the neglecting of the end edge heat loss will be less than 5 percent

for values of length-to-thickness ratio as low as 3. Therefore, since it

I

cn

u3
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is most unlikely that fin plates will be designed for ratios of _/t of

about 5 or less, it can be concluded that the effects of any heat loss

from an exposed end edge can be neglected.
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